Respiratory gas exchange at lungs, gills and tissues: mechanisms and adjustments.

نویسنده

  • J Piiper
چکیده

(1) A general model for external gas exchange organs of vertebrates is presented, in which the main parameters are the ventilatory, diffusive and perfusive conductances for O2 and CO2. The relevant properties of the external medium (air or water) and of the internal medium (blood) are analysed in terms of capacitance coefficients (effective solubilities) for O2 and CO2. The models for the main types of gas exchange organs (fish gills, amphibian skin, and avian and mammalian lungs) are compared in terms of their intrinsic gas exchange efficacy. The adjustments to increased metabolic rate or to hypoxia are achieved by increasing the conductances. (2) The gas exchange at tissue level is analysed using the Krogh cylinder and a simplified model containing a diffusive and a perfusive conductance. The adjustments to increased load (exercise, hypoxia) consist in both increased local blood flow and in improvement of diffusion conditions (enlargement and recruitment of capillaries). (3) Some particular features of respiration in transitional (unsteady) states, such as occurring at the beginning of exercise and of hypoxia, are examined. The additional physical variables are the O2 (and CO2) stores acting according to their capacitances and partial pressure changes. Delayed increase in O2 uptake at the beginning of exercise is due to the limited speed of physiological adjustments. The ensuing O2 debt is energetically covered by anoxidative energy releasing processes (hydrolysis of high-energy phosphates and anaerobic glycolysis). Finally, the reduction of metabolic rate as adjustment to hypoxia is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Respiration during chronic hypoxia and hyperoxia in larval and adult bullfrogs (Rana catesbeiana). I. Morphological responses of lungs, skin and gills.

Larval and adult bullfrogs, Rana catesbeiana (Shaw), were exposed to 28 days of normoxia (PO2 150 mmHg), hypoxia (PO2 70-80 mmHg) or hyperoxia (PO2 greater than 275 mmHg) at 20-23 degrees C, after which the following morphological measurements were made: (1) mass, thickness, capillary mesh density and blood-water barrier of the skin; (2) mass, volume, cava density and blood-gas barrier of lungs...

متن کامل

The Role of the Gills and Branchiostegites in Gas Exchange in a Bimodally Breathing Crab, Holthuisana Transversa: Evidence for a Facultative Change in the Distribution of the Respiratory Circulation

The respiratory circulation was investigated in air-breathing and waterbreathing Holthuisana transversa von Martens by analysis of the distribution of radioactive microspheres injected into the haemocoel at seven locations. The gills and putative lungs (branchiostegites and membraneous thoracic walls) both trap approximately 90 % of the microspheres entrained in their afferent circulations. The...

متن کامل

A Comparative Data-Based Modeling Study on Respiratory CO2 Gas Exchange during Mechanical Ventilation

The goal of this study is to derive a minimally complex but credible model of respiratory CO2 gas exchange that may be used in systematic design and pilot testing of closed-loop end-tidal CO2 controllers in mechanical ventilation. We first derived a candidate model that captures the essential mechanisms involved in the respiratory CO2 gas exchange process. Then, we simplified the candidate mode...

متن کامل

The lungs at birth.

In order to obtain insight into disturbances of pulmonary function in newborn infants we have to consider the physiological changes that occur in the lungs at birth. By combining the information obtained from a variety of animal experiments with our clinical observations, we can construct a fairly coherent picture of some of these events and see the ways in which their normal course is disturbe...

متن کامل

Metabolic Functions of the Lung, Disorders and Associated Pathologies

The primary function of the lungs is gas exchange. Approximately 400 million years ago, the Earth's atmosphere gained enough oxygen in the gas phase for the animals that emerged from the sea to breathe air. The first lungs were merely primitive air sacs with a few vessels in the walls that served as accessory organs of gas exchange to supplement the gills. Eons later, as animals grew accustomed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 100  شماره 

صفحات  -

تاریخ انتشار 1982